Nearest Neighbour Models
Implicit contains several item-item nearest neighbour models. See this post for more information.
CosineRecommender
-
class
implicit.nearest_neighbours.CosineRecommender(K=20, num_threads=0) Bases:
implicit.nearest_neighbours.ItemItemRecommenderAn Item-Item Recommender on Cosine distances between items
TFIDFRecommender
-
class
implicit.nearest_neighbours.TFIDFRecommender(K=20, num_threads=0) Bases:
implicit.nearest_neighbours.ItemItemRecommenderAn Item-Item Recommender on TF-IDF distances between items
BM25Recommender
-
class
implicit.nearest_neighbours.BM25Recommender(K=20, K1=1.2, B=0.75, num_threads=0) Bases:
implicit.nearest_neighbours.ItemItemRecommenderAn Item-Item Recommender on BM25 distance between items
ItemItemRecommender
-
class
implicit.nearest_neighbours.ItemItemRecommender(K=20, num_threads=0) Bases:
implicit.recommender_base.RecommenderBaseBase class for Item-Item Nearest Neighbour recommender models here.
- Parameters
-
save(fileobj_or_path) Saves the model to a file, using the numpy .npz format
- Parameters
file (str or io.IOBase) – Either the filename or an open file-like object to save the model to
See also